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Abstract

Central and upwind compact schemes for spatial discretization have been analyzed with respect to accuracy in

spectral space, numerical stability and dispersion relation preservation. A von Neumann matrix spectral analysis is

developed here to analyze spatial discretization schemes for any explicit and implicit schemes to investigate the full

domain simultaneously. This allows one to evaluate various boundary closures and their effects on the domain interior.

The same method can be used for stability analysis performed for the semi-discrete initial boundary value problems

(IBVP). This analysis tells one about the stability for every resolved length scale. Some well-known compact schemes

that were found to be G-K-S and time stable are shown here to be unstable for selective length scales by this analysis.

This is attributed to boundary closure and we suggest special boundary treatment to remove this shortcoming. To

demonstrate the asymptotic stability of the resultant schemes, numerical solution of the wave equation is compared

with analytical solution. Furthermore, some of these schemes are used to solve two-dimensional Navier–Stokes

equation and a computational acoustic problem to check their ability to solve problems for long time. It is found that

those schemes, that were found unstable for the wave equation, are unsuitable for solving incompressible Navier–Stokes

equation. In contrast, the proposed compact schemes with improved boundary closure and an explicit higher-order

upwind scheme produced correct results. The numerical solution for the acoustic problem is compared with the exact

solution and the quality of the match shows that the used compact scheme has the requisite DRP property.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

With the advent of powerful computers it is now common to solve differential equations numerically in

various disciplines of science and engineering. This includes the solution of partial differential equations

with stringent requirements of resolving wide range of spatial and temporal scales. For example, in CFD it

is now common to solve the governing Navier–Stokes equation resolving all the scales of a turbulent flow in

DNS for moderate Reynolds numbers. Similarly in many wave propagation problems one solves governing
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hyperbolic partial differential equations and such solutions are required to be accurate in the far field and

for long time periods. These requirements demand that the adopted numerical method be highly accurate

and dispersion error free. Lighthill [1] and Taflove [2] have discussed, respectively, the problems of com-
putational aero-acoustics (CAA) and computational electromagnetics (CEM) for numerical solutions with

respect to these issues.

Such requirements are best satisfied by spectral methods [3,4]. Spectral methods have been used mostly

for problems involving simple geometries and boundary conditions, though applications to complex do-

mains are available [26,27]. Alternatives to spectral method are the (i) higher-order explicit upwind methods

as in [5,6] and (ii) methods based on Pad�ee approximation as was originally given in [7]. The latter methods

offer higher-order approximations to differential operators using compact stencils that relate various de-

rivatives with function values at discrete nodes. All higher-order compact schemes can be expressed by the
following set of linear algebraic equation

½A�u0 ¼ ½B�u: ð1Þ

Each row of this represents an implicit relation between the derivatives and function values for compu-

tational nodes. For numerical convenience, it is desired that A and B be band-limited. The most often used

structure of A matrix is tridiagonal. This equation can also be written down in an equivalent explicit form

by

u0 ¼ ½A��1½B�u ¼ ½C�u; ð2Þ

where C is not necessarily compact. The early work on compact differencing scheme can be seen in [8–10].

Such methods have been optimized to solve the time-domain Maxwell equations in [11] and for problems

relating to acoustics in [12,13,28]. In [12] the important concept of dispersion relation preservation (DRP) is

discussed with respect to high accuracy schemes for acoustics problems.
For problems with periodic boundary conditions, A and B are periodic symmetric matrices. However, for

many practical problems periodic boundary conditions are not applicable and one-sided stencils are needed

near boundaries, making A and B matrices non-symmetric. Computationally, symmetric B matrix corre-

sponds to non-dissipative central schemes and non-symmetric B matrix arises from upwind schemes.

Schemes given in [9,10,14] are typical examples of central non-dissipative method of spatial discretization.

In [14] a periodic problem is solved and hence the symmetric stencil is used at all points. However, in [9] a

non-periodic problem is solved that requires taking asymmetric stencils at and near-boundary points while

the inner stencil is still symmetric. Such forced upwinding near boundaries can cause the overall method to
become unstable. One of the aim here is to use a Fourier spectral frame-work to analyze schemes including

inner and boundary closure schemes simultaneously. For upwind compact schemes, B matrix is asymmetric

for all the nodes. Typical examples are as in [15,16].

Issue of whether to use a central or upwind compact scheme rests on numerical stability of such schemes

everywhere in the domain. Numerical stability is usually investigated in two ways. The first is the method

given in [17] that is based on normal modal analysis and referred to as G-K-S stability theory. In this theory

estimates are developed for inner and boundary schemes to ensure stability. First-order partial differential

equations were considered [17] as IBVPs for which the term involving the spatial derivative is multiplied by
a square Hermitian matrix. For compact high-order schemes, any problem with non-periodic boundary

would require an asymmetric stencil and hence the corresponding matrix is not Hermitian. For example,

Carpenter et al. [18] considered two spatial discretizations that lead to the above matrix being asymmetric.

The subsequent semi-discrete eigenvalue analysis (by considering a time continuous system) for the explicit

and compact fourth-order spatial operators by the authors revealed a spectrum with some eigenvalues

crossing over the imaginary axis into the right half plane (Figs. 3 and 4 of [18]) indicating instability.

Investigated spatial discretization schemes were, however, stable in the Kreiss sense.
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This brings one to the important aspect of asymptotic stability analysis. The strong point of the G-K-S

analysis is that this presents a theory that includes interior points and boundaries together. But, the defi-

nition of G-K-S stability (also known as Lax stability) might be too weak [18] and hence it will not be a
practical option to use those compact schemes for DNS, CAA and CEM that are only G-K-S stable.

According to [18], for truly time dependent problems, sufficiently accurate solutions over long time requires

excessively large number of grid points. Basically the essential dynamics of the system is then expressed over

a small fraction of grid-resolved wave numbers of the very fine grid. However, the fine grid requirement

negates the basic advantages of compact schemes with fewer grid points.

The time-stability analysis given in [15,18] are in the physical plane and do not provide information

about the performance of schemes at different length scales. Here we adopt a different approach of in-

vestigation for spatial discretization schemes in spectral plane following the method of [19], allowing us to
look at interior and boundary points simultaneously. Spatial discretization schemes for interior and

boundary points may be found stable when analyzed in isolation. But, overall numerical stability may be

lost when these are analyzed together. In this context a few well-known schemes are analyzed here for their

accuracy and stability.

Working in the physical plane with a uniform grid of size h, the unknown is related to its bi-lateral

Laplace transform by

uðxlÞ ¼
Z

UðkÞeikxl dk; ð3Þ

where the integral is performed over the limit �km to km, defined by the Nyquist limit of km ¼ p=h. Hence a
first derivative is obtained analytically by u0ðxlÞ ¼

R
ikUðkÞeikxl dk.

If the first derivative is evaluated numerically by discrete method, then the same can be written as

u0ðxlÞ ¼
Z

ikeqUðkÞeikxl dk: ð4Þ

Different numerical schemes have different estimates of keq and it is in general a complex quantity. For

numerical stability of any scheme, one must look at the imaginary part of keq. The imaginary part of keq
represents numerical dissipation only when it is negative. Any scheme, that produces a positive imaginary

part of keq is numerically unstable because a positive imaginary part is equivalent to adding anti-diffusion.

This method of analysis for spatial discretization is independent of the actual differential equation that has

to be solved and it also indicates the length scales at which instability arises.
In the next section accuracy in spectral space is discussed considering some well-known compact schemes

and some schemes that we propose here for spatial discretization. In Section 3, the numerical stability for

the solution of linear wave equation is discussed for the spatial schemes used in conjunction with Euler time

integration scheme. The DRP property of these space–time discretization schemes are analyzed with respect

to linear wave equation in Section 4. In Section 5, numerical solution of linear wave equation is compared

with exact solution for discontinuous initial data. We demonstrate the ability of two compact schemes and

an explicit higher-order upwind scheme in solving the Navier–Stokes equation for the receptivity of a shear

layer to a convecting vortex in the free stream. Finally, we solve an acoustics problem and compare with
exact solution to show the effectiveness of the computing schemes.
2. Accuracy of compact schemes in spectral space

To evaluate keq for compact schemes for first derivative in Eq. (4), the implicit relation between the

first derivatives and the function values at different nodes can be expressed by the equivalent explicit

relation as given in Eq. (2). To perform spectral analysis one uses Eq. (3) in Eq. (2) – giving rise to an
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implicit relation between the derivative at a given point with function values of the whole domain. One

can relate the derivative at the lth-node in terms of the function value there by using a projection op-

erator (Pjl) such that

u0l ¼
XN
j¼1

CljPjl

( )
ul; ð5Þ

where

Pjl ¼ eiðj�lÞkh ¼ Rjl þ iIjl:

Thus, one obtains keq for any node from

ðkeqÞl ¼ �i
XN
j¼1

CljPjl ð6Þ

for l ¼ 1 to N . Here a value of N is chosen sufficiently large so that the results presented for keq does not

depend upon this choice. Here we have used 30 points with the 1st and the 30th point as boundary points.

The 2nd and the 29th points are referred to as near-boundary points in the discussion that follows. Rest of

the points are treated as the interior points.
In presenting the results, we will refer to A-scheme that is given in [9]; the HT-scheme that is given in [14]

and the Z-scheme given in [15]. For these schemes the real and imaginary parts of keq=k are obtained from

Eq. (6) and plotted as a function of kDx in Figs. 1(a) and 2(a), respectively. A scheme that has a larger range

over which keq=k is close to one is more accurate in spectral space and this definition of accuracy is not

related to the formal accuracy defined in terms of truncation error. In these figures results for an inner and a

central point are shown. The HT-scheme has the best overall resolution among these three schemes.

However, all the three schemes display anti-diffusion for the point j ¼ 3, with Z-scheme showing the least

desirable property. It is evident that these schemes retain near-spectral accuracy up to large wave numbers
within the Nyquist limit for the central points. The points near the boundaries show poor spectral reso-

lution and anti-diffusion. For advection problems with positive group velocity the imaginary part of keq
should be negative so that the feedback arising out of boundary-and near-boundary stencils is negative and

numerically stabilizing. For j ¼ 2 to 6 this is seen to be violated for certain ranges of high wave numbers.

This will make any error present to grow due to a local instability. For receptivity problems such schemes

will accumulate errors near the boundaries locally. However, if these errors convect then these errors will

convect to the interior where the scheme is stable. For DNS at super-critical Reynolds numbers such

sequences of instabilities and stabilities may be misinterpreted as a regeneration mechanism of fully
developed turbulence.

This unstable behavior of near boundary points as faced by A-, HT- and Z-schemes are entirely due to

boundary and near-boundary compact schemes and it can be removed by choosing suitable explicit stencils

at boundary and near-boundary points. We propose the following boundary stencil:

u01 ¼
ð�3u1 þ 4u2 � u3Þ

2h
: ð7Þ

For the near-boundary point, the following stencil is suggested:
u02 ¼
2b
3

��
� 1

3

�
u1 �

8b
3

�
þ 1

2

�
u2 þ ð4bþ 1Þu3 �

8b
3

�
þ 1

6

�
u4 þ

2b
3
u5

��
h: ð8Þ



Fig. 1. (a) Real part of keq=k for the first derivative for points j ¼ 3 and 15 for: (a) A-scheme, (b) HT-scheme and (c) Z-scheme. (b)

Real part of keq=k for the first derivative for points j ¼ 3 and 15 for: (a) OUCS-1, (b) OUCS-2 and (c) OUCS-3 schemes.
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Fig. 2. (a) Imaginary part of keq=k for the first derivative at different nodes evaluated for the points j ¼ 2 and 6 for: (a) A-scheme, (b)

HT-scheme, (c) Z-scheme. (b) Imaginary part of keq=k for the first derivative at different nodes evaluated for the points j ¼ 2 and 6 for:

(a) OUCS-1, (b) OUCS-2 and (c) OUCS-3 schemes.
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These boundary and near-boundary stencils along with the following interior stencils are to be used in our

proposed schemes. For the first such scheme – referred to as the first optimized upwind compact scheme or

OUCS1 – the interior stencil is given by

bl�1u0l�1 þ blu0l þ blþ1u0lþ1 ¼
1

h

X2

k¼�2

alþkulþk �
a
6!
h4

o6u
ox6

� �
ð9Þ

with al�2 ¼ � 5
3
þ 5

6
a; al�1 ¼ � 140

3
þ 20a

3
; al ¼ �15a; bl�1 ¼ 20� a and bl ¼ 60. This is an upwind scheme for

a < 0 and is based on a sixth-order central scheme (with a ¼ 0). In Z-scheme a ¼ �0:24 is used. The
Z-scheme in turn is an upwind version of the A-scheme proposed in [9]. The value of b in Eq. (8) used here

is )0.09 for j ¼ 2 and 0.12 for j ¼ 29.

The second proposed scheme is also a variant of the Z-scheme with the following inner stencil:

b1u0l�1 þ b2u0l þ b3u0lþ1 ¼
1

h

X2

k¼�2

akulþk; ð10Þ

where b1 ¼ b2
3
� a1

12
; b3 ¼ b2

3
þ a1

12
; a�2 ¼ � b2

36
þ a1

72
; a�1 ¼ � 7b2

9
þ a1

9
and a0 ¼ � a1

4
. This scheme is referred to as

OUCS2. Unlike the Z-scheme, here the coefficient of o6u=ox6 term is treated as the free parameter a1. The
optimal behavior with respect to phase and dispersion error is seen for a1 ¼ �40 and b2 ¼ 36. The value of

b in Eq. (8) is chosen as 0.02 for j ¼ 2 and 0.09 for j ¼ 29.

The third optimal upwind scheme (referred to as OUCS3) is a variation of the HT-scheme. Here the

inner stencil is given by

pl�1u0l�1 þ u0l þ plþ1u0lþ1 ¼
1

h

X2

k¼�2

qkulþk; ð11Þ

where pl�1 ¼ D� g
60
; q�2 ¼ � F

4
þ g

300
; q�1 ¼ � E

2
þ g

30
and q0 ¼ � 11g

150
and with D ¼ 0:3793894912; F ¼

1:57557379; E ¼ 0:183205192 and g ¼ �2. Here, in Eq. (8) b ¼ �0:025 for j ¼ 2 and b ¼ 0:09 for j ¼ 29 is

used for optimal performance.

The six compact schemes discussed above are for problems where information propagation is uni-di-

rectional. For many practical convection dominated problems information propagates in all direction and

then explicit schemes are robust and useful. A third-order upwind scheme used in [5,6,20] referred here as

K-scheme has the following interior stencil:

u0l ¼
ð�ulþ2 þ 8ulþ1 � 8ul�1 þ ul�2Þ

12h
þ ðulþ2 � 4ulþ1 þ 6ul � 4ul�1 þ ul�2Þ

4h
: ð12Þ

For near-boundary points in [6,20] first-order upwinding is used for stability. All the compact schemes

discussed above have excellent accuracy in spectral space-better than explicit high-order schemes. The

formal accuracy of compact schemes revealed by Taylor series expansion is not relevant. Because, OUCS3

and HT-schemes are only second-order accurate but they provide the highest accuracy in spectral space

among these six schemes. In designing the OUC schemes the following procedure is adopted. Once the C
matrix in Eq. (2) has been constructed each row represents a stencil for a point corresponding to that row

number. To avoid instability for the near-boundary points the corresponding rows are replaced by an

explicit second-order central difference stencil. Use of Eq. (8) is mandatory in constructing the C-matrix for
stable behavior of other points in the domain.
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3. The numerical stability and amplification properties

To evaluate any numerical scheme it is natural to calibrate it with respect to a model equation that
mimics the physical processes and preferably possesses exact solution. The linear wave equation serves these

requirements. For DNS, physical convection is most important and a method is preferred that solves wave

equation most effectively. With this in mind we use different compact schemes to discretized spatial

derivative while using standard temporal schemes for the wave equation

ou
ot

þ c
ou
ox

¼ 0; ð13Þ

where c is the phase speed of the propagating wave.

If we relate the unknown in Eq. (13) with its bi-lateral Laplace transform by

uðx; tÞ ¼
Z

Uðk; tÞeikðx�ctÞ dk; ð14Þ

then we can define the amplification factor of any numerical scheme by G ¼ Uðk; t þ DtÞ=Uðk; tÞ. This
amplification factor depends upon the spatial and temporal discretization used in Eq. (13). For Euler time

integration scheme this is obtained, by using Eq. (6) in Eq. (13), as

GðkÞ ¼ 1� cDt
X
j

Clje
ikðxj�xlÞ: ð15Þ

The real part of the amplification factor for all the seven schemes are shown for CFL number (Nc) equal

to 0.001 in Fig. 3 for the Euler time integration scheme. It is already shown that some spatial discretization
Fig. 3. Real part of amplification factor (G) at the point j ¼ 3 for various spatial schemes, in solving linear wave equation using Euler

time integration scheme. All OUC schemes are stably clustered below G ¼ 1.
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schemes have instability built-in due to the addition of anti-diffusion at points near the boundaries. When

such schemes are used in conjunction with time discretization schemes the resultant schemes can become

stable or unstable depending upon the nature of the temporal discretization. In this context, the Euler time
discretization, for very small time steps, is neutral i.e. it transmits the spatial discretization properties

without any modifications. Among the different spatial schemes in Fig. 3, A-, HT- and Z-schemes show

instability for many points at high wave numbers. The K- and OUC schemes are stable across all wave

numbers. The instability can be avoided by taking large number of points such that the essential dynamics

of the system is represented within the stable wave number range itself [18]. However, this defeats the main

purpose of higher-order schemes that allows solving problems with fewer points due to their higher ac-

curacy in spectral space. A stable and robust scheme should damp out undesirable high wave number error

components that are due to aliasing error. At the same time, it should not suppress physical oscillations.
Thus, a useful numerical scheme should be near-neutral at small and moderate wave numbers while it

should have adequate amount of dissipation present at high wave numbers.

Multi-stage Runge–Kutta time integration schemes have been used often for its excellent stability

properties. If a four stage time integration strategy is used for these compact schemes, then the corre-

sponding amplification factor is given by

G4 ¼ ð1� 2ay þ 2bzÞ � 2iðby þ azÞ; ð16Þ

where y ¼ 1� ½2a� 2a2 þ 2b2 þ a3 þ 3ab2�=3 and z ¼ ½4ab� 2b� 3a2bþ b3�=3 and aþ ib ¼ Nch=2PN
j Clje

ikhðj�lÞ. These are shown in Fig. 4 for CFL number equal to Nc ¼ 0:001. The features are same as in
Fig. 3. However, the high wave number instability for A-, HT- and Z-schemes is more severe for this time

integration scheme.
Fig. 4. Real part of amplification factor (G) at the near boundary point (j ¼ 2) for various spatial schemes, in solving linear wave

equation using Runge–Kutta four stage time integration scheme for CFL No.¼ 10�3. All OUC schemes are stably clustered at G ¼ 1.
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4. Dispersion relation preservation property of numerical schemes

For many wave propagation problems the group velocity (Vg) is a more meaningful physical quantity
than the phase speed – as energy propagates with this velocity. In this context linear wave equation is

non-dispersive i.e. the group velocity and phase speed are identical. Thus if we use Eq. (13) as the

model equation, then a numerical scheme for space–time dependent problem can be characterized by

comparing the numerical group velocity with the phase speed. Spectral method shows equality of

numerical and physical group velocity identically for Eq. (13). This is not the case for other discrete

computational methods. Methods have been identified in [12] as dispersion relation preserving (DRP) if

numerical and physical dispersion relation matches. Here, instead of looking at the dispersion relation

the group velocity estimate is used as a quantifier for DRP property. Such an analysis was performed
in [21] for flux vector splitting finite volume schemes that use higher-order reconstruction of fluxes at

the cell interface.

DRP property is specific for governing equations and for Eq. (13) this is given by

x ¼ kc: ð17Þ

The dispersion relation is the governing differential equation in the spectral plane indicating space–time

scale interrelationship for truly unsteady problems. Thus it is imperative that high accuracy schemes satisfy

this. The numerical group velocity of a scheme is estimated by evaluating dkeq=dkð¼ p þ iqÞ by using Eqs.

(5) and (6) and dxeq=dxð¼ r þ isÞ for the used time discretization scheme. The numerical group velocity is
then given by

ðVgÞNum ¼ pr þ qs
r2 þ s2

: ð18Þ

Two time integration methods are listed below with their value of dxeq=dx:
• Euler scheme: Here r þ is ¼ cosðxDtÞ � i sinðxDtÞ.
• Adams–Bashforth scheme [22]: Here r ¼ ½a3c3 þ b3d3�=½a23 þ b23� and s ¼ ½a3d3 � b3c3�=½a23 þ b23�, where

a3 ¼ 9þcosð2xDtÞ � 6 cosðxDtÞ; b3 ¼ sinð2xDtÞ � 6 sinðxDtÞ; c3 ¼ 8 cosðxDtÞ � 4 and d3 ¼ �4 sinðxDtÞ.
For the Runge–Kutta schemes the numerical group velocities are evaluated directly using Eq. (13) and

calculating Vg. If we define

a4 þ ib4 ¼ h
X
j

Clje
ikðxj�xlÞ;

a5 þ ib5 ¼
X
j

Cljðxj � xlÞeikðxj�xlÞ;
ð19Þ

then for the four stage Runge–Kutta scheme the numerical group velocity is obtained as ðVgÞNum ¼
c½a5 þ 2Ncðb4b5 � a4a5Þ=3þ a5N 2

c ð3a24 � b24 � Nca34 þ Nca4b24Þ=6þ b4N 2
c ð�6a4b5 � 2b4a5 � 3Nca24b5 � Ncb5b24þ

2Nca4a5b4Þ=6�= cosðxDtÞ:
The numerical group velocity is compared with phase speed in the ðkDx� xDtÞ-plane in Fig. 5 for the

A- and OUCS3 schemes for spatial discretization and the above three time discretization schemes. The

useful region is darkened in this plane where the numerical group velocity is within �5% of the exact

value. The region close to the origin is of interest. For both the spatial discretization schemes, Euler and

RK4 time discretization schemes have identical ranges of wave number and circular frequency available

for DRP. However, the Adams–Bashforth time integration scheme has poor DRP property for both the

spatial discretization schemes. It is noted that the DRP analysis is performed only for the interior

stencils.



Fig. 5. Region of (kDx–xDt) plane where numerical group velocity is within 5Euler (b) Adams–Bashforth (c) Runge–Kutta four stage

time integration schemes. CFL number taken for Runge–Kutta method is 0.001.
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5. Solution of linear wave equation

The analyses of the previous sections have shown that the Euler time integration scheme has near-neutral

amplification factor and good DRP property for low computational efforts. In solving linear wave equation

Euler time integration is considered here to highlight certain features of spatial schemes by comparing the

computed results with exact solution.
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Here a domain of 06 x6 1 is considered with 200 uniformly distributed points. The phase speed is taken as

c ¼ 0:05 such that the signal given by the initial condition (as shown in the top panel of Fig. 6) leaves the

computational domain at t ¼ 20. The initial condition has piecewise discontinuity at both the ends and is
identically zero outside the domain. This discontinuous initial condition excites a large range of wave num-

bers. The number of grid points chosen is large to provide a Nyquist limit on wave number equal to 200p so

that the aliasing error is not important. The analytical solution is identically zero in the computational domain

for tP 20. Thus a long time integration would reveal asymptotic stability of numerical methods.
Fig. 6. Plots of uðxÞ vs x for the linear wave equation. Computed results, using Adams compact spatial scheme and Euler time in-

tegration, are compared with the analytical solution for phase speed c ¼ 0:05; no. of spatial nodes¼ 200 and time step¼ 10�4. Last

three panels are magnified.
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The numerical and exact solution of Eq. (13) are compared in Fig. 6 for the A-scheme. The discontinuity

of the initial condition at the left boundary propagates inside the computing domain with time. One notes

the associated Gibbs phenomenon to the left of the discontinuity. Subsequently when the discontinuity has
moved inside, the present numerical dissipation will attenuate the solution locally. The fact that this scheme

is unstable for j ¼ 2 is visible from the solution shown at t ¼ 25. This is also visible at t ¼ 30, where the

y-scale is enhanced. Beyond t ¼ 20 the solution is zero in the computational domain. However, round-off

and other numerical errors constitute a wide-band noise over the whole domain that is amplified near the

left boundary (where Fig. 2(a) indicated numerical instability) and noted beyond t ¼ 20. With time this

error moves to the right where lesser or no instability is seen. The effect of such instability is seen as far as

the first quarter of the domain. This error attenuates more and more as it moves to the right due to the low

pass filter nature of the scheme and also due to numerical dissipation introduced.
In Fig. 7 the computed wave solution by HT-scheme is compared with the exact solution. As before one

notices the Gibbs� phenomenon to the left of the propagating discontinuity. The HT-scheme has higher
Fig. 7. Plots of uðxÞ vs x for the linear wave equation. Computed results, using Haras–Ta�asan compact scheme and Euler time

integration, are compared with the analytical solution for the same parameters as in Fig. 6.



Fig. 8. Plots of uðxÞ vs x for linear wave equation. Computed results, using OUCS-2 compact spatial scheme and Euler time inte-

gration, are compared with exact solution for the same parameters as in Fig. 6.
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spectral resolution as compared to the A-scheme. But HT-scheme also has larger instability near the left

boundary as compared to the A-scheme. This is the reason for larger error that propagates farther to the

right. The low-pass nature of the associated filter of this scheme causes the error to eventually decay for

large time.

Fig. 8 shows the corresponding solution for OUCS2 that has the least amount of numerical dissipation

among the OUC schemes. Thus one notices very good agreement between computed and exact solution.

Also the Gibbs phenomenon is minimal here with very few oscillations upstream and smaller amplitudes as
compared to A- and HT-schemes. The solution displays no error beyond t ¼ 25. Both of these features are

due to the added numerical dissipation of this scheme at inner and boundary stencils.
6. Some examples

6.1. Receptivity of shear layer

Vortex-induced eruptions inside a shear layer, as excited by a convecting vortex far outside the shear

layer is an important problem with many applications. This has been investigated earlier theoretically

[23,24] and experimentally [25]. This is a typical receptivity problem and can be used to check the efficiency

of some of the compact schemes to solve Navier–Stokes equation. Here the Navier–Stokes equation in

stream function-vorticity (w–x) formulation has been solved using the K-scheme [5,6,20], the A-scheme [9]

and the OUCS3 scheme for the vorticity transport equation.
Here the problem is solved in a box located above a flat plate. In the computational domain, uniform

grid is used in the streamwise direction using 800 points for the K-scheme and 400 points for the compact

schemes. In the wall normal direction a non-uniform grid that stretches in an arithmetic progression is used

for all the cases. For the K-scheme 175 points have been used in this direction with wall resolution of
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0:00175d�, where d� is the displacement thickness of the shear layer at the inflow of the domain that is 84d�

from the leading edge of the plate. The Reynolds number based on this length scale is 250 and the flow is

sub-critical with respect to Tollmien–Schlichting waves up to x=d� ¼ 369. For the A-scheme and OUCS3 we
have used only 100 points in the wall normal direction.

For the boundary and initial conditions, the effect of single convecting vortex above the shear layer at a

constant height of 32d� is calculated analytically considering an image vortex. This provides Dirichlet

boundary conditions at the top and inflow boundary of the domain. At the inflow the oncoming shear layer

is given by the Blasius profile. At the outflow (located at 384d� from the leading edge) a fully developed

condition is used for the normal velocity. This fixes the vorticity at outflow boundary by the kinematic

definition of vorticity. The initial condition is obtained over the whole computational domain by using the

boundary layer solution everywhere and adding the inviscid perturbation to it that is created by the
convecting vortex and its image. The image vortex ensures that there is no normal velocity at the solid wall

at all times. Note that the convecting vortex is located at x ¼ 50d� at t ¼ 0. This vortex convects to the right

at a speed of c ¼ 0:20U1.

The stream function equation is solved by the conjugate gradient method. For the solution of vorticity

transport equation we have treated the diffusion terms by central differencing. The convection terms have

been discretized by the third-order upwinding [5,6,20] for the K-scheme. These terms are separately eval-

uated by solving the implicit equations for the compact schemes. For a general problem the convection

velocity switches direction that is not known a priori. The A-scheme being a central scheme for the interior
Fig. 9. Streamline contours at indicated times for: (a) Kuwahara, (b) Adams and (c) OUCS3 schemes as obtained by solving the

Navier–Stokes equation in w–x formulation. The arrow on the top left corner indicates the location of the convecting vortex.
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with fixed boundary stencils such an information is not needed. But, for the OUCS3 one has to calculate

derivatives at each time step by calculating the sign of local velocity vector.

The results are shown in Fig. 9 for t ¼ 198 just prior to when the A-scheme blew up due to numerical
instability – as evident from the stream function contour plots. The difficulty starts near the top left corner

of the domain, where the unstable effects of the near-boundary points were shown in Fig. 2(a). The imposed

excitation is large at this time when the convecting vortex is above the computational domain. The K- and

OUCS3 schemes continue beyond this time without any instability.

6.2. Linear acoustics

To demonstrate the performance of the proposed schemes for a two-dimensional hyperbolic problem a

simple linear aero-acoustics problem is solved next that admits an exact solution. This is obtained by

solving the full Euler equation. We consider the simultaneous propagation of acoustic, entropic and
Fig. 10. Solution of Euler equatin for the acoustic problem of [12]. In (a) and (b) pressuredisturbance contours at 500 and 1150 time

steps, respectively, are shown for the peak amplitude and 20%, 10%, 5%, 2% and 1% levels of it. In (c) and (d) the computed solution is

compared with the exact solution at these times at the centerline.
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vortical wave pulses. This is the problem that was considered in [12] to discuss about the DRP property of

numerical schemes and the boundary conditions. We have used the OUCS2 scheme given by Eq. (10) along

with a1 ¼ 0. To avoid spurious reflections from the boundaries optimized nine point stencils have been used
that is given by

u0 ¼ 1

h

X9

l¼1

alul: ð20Þ

All the al�s are obtained from consistency requirements by Taylor series expansion with

a1 ¼ �2:62538939007719. Similar stencils were developed for two more layers of points on all boundary

segments. The mean flow (M1 ¼ 0:5) is superposed initially with pressure, vorticity and entropy pulses of
amplitudes 0.001, 0.001 and 0.0004, respectively. The respective half widths of the Gaussian pulses are 3, 3

and 5. We have used the same uniform grid as used in [12] with the spacing as the length scale. The velocity

scale is provided by the speed of sound of the undisturbed flow. For further details the reader is referred to

[12]. The time integration of Euler equation was performed by the DRP-scheme proposed in [12].

In Fig. 10 some representative contour and line plots are shown for the disturbance pressure at indicated

times using the DRP-time integration scheme with Dt ¼ 0:0569. The computed results match identically

with the computed solution in [12] for the contours shown in Figs. 10(a) and (b). In Figs. 10(c) and (d) the

computed disturbance pressure along the center-line is compared with the exact solution of the linearized
Euler equation. The excellent match between the two indicates the ability of our proposed scheme to tackle

two-dimensional hyperbolic problems.
7. Conclusions

Central and upwind compact schemes have been analyzed by a matrix- spectral analysis developed here.

It is shown that some of these schemes are unstable due to boundary stencils near one of the boundaries. To
cure this problem – arising from the boundary treatment – three new optimal upwind-biased schemes have

been proposed (OUCS1, OUCS2 and OUCS3 defined in Eqs. (10)–(12)).

The combined space–time discretization methods for linear wave equation show the amplification factor

to be unstable near the boundary as well. Also we show that the group velocity, an indicator of DRP

property (in the sense that is described in [12,21]), can be used to describe the space–time discretization

effectiveness for truly unsteady problems. It is found that the proposed upwind-biased schemes in con-

junction with Euler time integration scheme have the desirable property of near-neutral stability and DRP

property. This is tested by solving linear wave equation with discontinuous initial condition. It is also seen
that some of the schemes are not stable asymptotically. This is also shown by solving Navier–Stokes

equation for a well-defined receptivity and an acoustic wave problem.
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